test01

test01

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import torch
import torch.nn as nn
import torch.optim as optim
import time

# 确认CUDA和cuDNN是否可用
assert torch.cuda.is_available(), "CUDA is not available"
assert torch.backends.cudnn.enabled, "cuDNN is not enabled"

# 设置设备
device = torch.device("cuda")

# 定义一个简单的卷积神经网络
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(64 * 8 * 8, 512)
self.fc2 = nn.Linear(512, 10)

def forward(self, x):
x = self.pool(torch.relu(self.conv1(x)))
x = self.pool(torch.relu(self.conv2(x)))
x = x.view(-1, 64 * 8 * 8)
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x

# 实例化网络并将其移至GPU
model = ConvNet().to(device)

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

# 生成一些随机输入和标签进行训练
# 假设输入是32x32的彩色图像,批量大小为64
inputs = torch.randn(64, 3, 32, 32).to(device)
labels = torch.randint(0, 10, (64,)).to(device)

# 训练模型
model.train() # 设置为训练模式
start_time = time.time() # 记录开始时间
target_duration = 300 # 设置目标运行时间(秒)
epochs = 0 # 初始化epoch计数器
report_interval = 1000 # 设置报告间隔

# 使用for循环代替while True循环
while time.time() - start_time < target_duration:
optimizer.zero_grad() # 清除旧的梯度
outputs = model(inputs) # 前向传播
loss = criterion(outputs, labels) # 计算损失
loss.backward() # 反向传播
optimizer.step() # 更新参数
epochs += 1 # 更新epoch计数器

# 每1000轮打印一次
if epochs % report_interval == 0:
print(f"Epoch: {epochs}, Loss: {loss.item()}")

# 循环结束后打印结果
end_time = time.time() # 记录结束时间
elapsed_time = end_time - start_time # 计算总耗时
print(f"Training finished. Total time: {elapsed_time:.2f} seconds, Epochs: {epochs}")

test01
http://example.com/2024/12/27/test01/
作者
chino1229
发布于
2024年12月28日
许可协议